Teoría de colisiones

Esta teoría está basada en la idea que partículas reactivas deben colisionar para que una reacción ocurra, pero solamente una cierta fracción del total de colisiones tiene la energía para conectarse efectivamente y causar transformaciones de los reactivos en productos. Esto es porque solamente una porción de las moléculas tiene energía suficiente y la orientación adecuada (o ángulo) en el momento del impacto para romper cualquier enlace existente y formar nuevas.
La cantidad mínima de energía necesaria para que esto suceda es conocida como energía de activación.
Partículas de diferentes elementos reaccionan con otras por presentar energía de activación con que aciertan las otras. Si los elementos reaccionan con otros, la colisión es llamada de suceso, pero si la concentración de al menos uno de los elementos es muy baja, habrá menos partículas para otros elementos reaccionar con aquellos y la reacción irá a suceder mucho más lentamente.
Con la temperatura aumentando, la energía cinética media y velocidad de las moléculas aumenta, pero esto es poco significativo en el aumento en el número de colisiones.
La tasa de reacción aumenta con la disminución de la temperatura porque una mayor fracción de las colisiones sobrepasa la energía de activación.
La teoría de las colisiones está íntimamente relacionada a la cinética química.
Los átomos de las moléculas de los reactivos están siempre en movimiento, generando muchas colisiones (choques). Parte de estas colisiones aumentan la velocidad de reacción química. Cuantos más choques con energía y geometría adecuada exista, mayor la velocidad de la reacción.

Esta imagen muestra los choques posibles entre moléculas
 
Teoría del complejo activado
Según esta teoría, al aproximarse los reactantes se produce la formación de un estado intermedio de alta energía y corta duración que se denomina “complejo activado”. La energía de activación es la energía que se necesita suministrar a los reactantes para que se forme el complejo activado.
Cuanto mayor sea la energía de activación, en general, menor será la velocidad de la reacción.
De acuerdo al cambio neto de energía, es decir, la diferencia entre la energía de los productos y de los reactantes, las reacciones se clasifican en endergónicas si se requiere energía, y exergónicas si se libera. Cuando la energía se manifiesta como calor, las reacciones se denominarán endotérmicas y exotérmicas respectivamente.
 
Diagrama de energía para reacciones con energía de activación
Reacción exotérmica con energía de activación:
exotérmica

∆ E < 0
La energía liberada corresponde a la diferencia de energía entre los productos y los reactantes. Como la energía de los productos es menor a la energía de los reactantes, se libera energía en el proceso.

Reacción endotérmica con energía de activación:

endotérmica
 
∆ E > 0
La energía necesaria para que ocurra el cambio corresponde a la diferencia de energía entre los productos y los reactantes. Como la energía de los productos es mayor a la energía de los reactantes, se requiere energía para el proceso.
Relación entre la velocidad de la reacción y la concentración de los reactantes
Una forma de estudiar el efecto de la concentración en la velocidad de reacción es determinando experimentalmente la velocidad con distintas concentraciones iniciales de reactantes.
 
Video que resume las colisiones efectivas
 

1 comentario: